candela

The person is so lazy that he left nothing.

Check the array layout on real Terrain topography

During the construction, the PV array arranged on the survey and map is often found that there are many inconsistencies with the site conditions, resulting in rework or changes. With Candela3D, the array layout results are superimposed with the actual terrain topography, allowing for an early check on the consistency between the design outcomes and the on-site terrain. This minimizes discrepancies between the design and the actual site, significantly reducing the amount of design rework. 1. aerial imagery One of the outcomes of drone aerial imagery is the Digital Orthophoto Map (DOM file), which can be directly pasted into the 3D design file of Candela3D. For details, see "Candela3D | Restoring the Real Landscape of a Project Using Drone Imagery". 2. Satellite imagery When there is no drone flight imagery available, satellite imagery can be quickly used for mapping, and the mapping layer "landform" can be toggled on and off…

The report is highly appreciated, with multiple new charts added for mountain analysis

In the process of mountain PV plant design, it is necessary to analyze the mountain to form a general and comprehensive understanding of the project site situation. At present, in the design process of many mountain photovoltaic projects, the overall analysis of the mountain is often not paid attention to, and the site delineation and layout are only carried out after a general understanding of the slope aspect. The Candela3D mountain analysis function has been enhanced with the ability to generate 6 new charts and 24 new tables, providing comprehensive mountain analysis content and significantly enhancing the report. 1. Normal analysis of mountain body This function can divide the mountain into a certain number of groups based on average normal vectors. Each group is represented by its average slope angle and slope direction. 2. Analysis of mountain slope orientation 3. Analysis of mountain slope angles (including natural slope angles, east-west…

Fresh Questions, Practical Answers: PVsyst Q&A Series #19

1.How to Calculate the power generation gain of the back side of Bifacial system? Answer: During the simulation, you can first choose single-sided simulation and then select Bifacial system. By subtracting the power generation of the two, you can calculate the theoretical power generation of the back side. 2. What is the difference between the back radiation gain and the power generation gain in a bifacial system? Answer: The backside radiation gain is an optical gain, which is different from the electrical gain. Therefore, the optical gain cannot represent the bifacial power generation gain. For example, as shown in the figure below, the backside radiation gain is 4.1%, and the actual effective backside radiation gain needs to be multiplied by the bifaciality factor of the PV modules. The power generation gain can be obtained through single-sided simulation and bifacial simulation. In this example, the single-sided power generation is 152,089 MWh,…

Fresh Questions, Practical Answers: PVsyst Q&A Series #20

1. Regarding the settings of circumsolar scattering in different versions, what impact do they have on the simulation results? Answer: In previous PVsyst versions (prior to 6.8), the circumsolar scattering was included in the scattering, whereas versions after 7.0 handle it separately. Especially in application scenarios with large tilts and vertical installations, separate treatment helps improve the accuracy of simulation results. Taking the vertical installation method of a PV module in Northern Europe as an example, the two simulation results of ambient solar radiation included in the scattering and treated separately are shown below. Different settings result in a difference of about 0.34% in hours of production. After separate treatment, the yield is higher. 2. How to set the LID and annual attenuation of PV modules? Answer: LID stands for Light Induced Degradation, which is related to material aging and annual degradation. These two factors are set separately in the…

固定安装面积下组件串联数对BOS成本的影响

传统的组件串联数设计主要依据当地的极端温度、系统电压等级测算,并根据实际情况在计算值的基础上增加1至2块组件。 当组件安装面积固定的情况下,组件串联数的取值不同,可能会对系统的BOS成本带来影响,主要的影响因素有长短支架的变化引起的安装容量、线缆、支架及基础等成本的变化。下面就以上海为站点做案例分析。 屋顶的类型为混凝土平屋面,有一定高度女儿墙,屋面上无任何遮挡物。屋面的面积假设5000平方。逆变器选择组串式逆变器,支架选择固定倾角式支架。光伏组件选择166版型475W。根据逆变器的电压等级1100V,当地的环境温度,设计的组件串联数取值可为18块或20块。 使用Candelaroof软件进行布置,可得到阵列的排布图,其中单个支架单元的相邻间距均为1m。 左图是使用18块组件一串,均为长支架(1*18),单个支架的组串数为1串,数量为70套,组件数量为1260块,组件容量为598.5kW; 右图是20块组件一串,长支架(1*20)数量为56套,单个支架的组串数量为1串,短支架数量(1*12)为13套,短支架(1*4)数量1套,短支架前后排通过4平方光伏延长线,以20块组件为一串进行连接,组件数量为1280块,组件容量为608kW。 由布置图纸可见,当使用18块组件为一串时,屋面宽度50m和长度100m,使用长支架可将整个屋面布满。 使用20块组件一串时,由于屋面的宽度有限,布置4列阵列以后,剩余的可利用空间只能使用短支架。 经统计,在容量上比1*18长支架方案增加了1.59%。 在逆变器的选型上,使用120kW逆变器,MPPT数量12路,单台逆变器均接入20串,那么对于长支架方案,组串数量70串,长短支架方案组串数量64串,如果逆变器数量均为4台,那么组串的数量均小于逆变器的可接入数,同时还可实现较为接近的容配比。对于长支架方案,容配比为1.25,对于长短支架方案,容配比为1.27。 使用1*20长短支架方案,由于组串数量下降,在电缆的使用量和成本上有一定的下降。 使用1*18长支架在支架和基础成本上有一定的下降。 当逆变器台数和单台价格相同的情况下,逆变器在直流侧的单瓦成本随着容配比的增加而下降,使用1*18方案,组件的安装容量有一定下降,因此逆变器直流侧的单瓦成本有一定增加。 组件的安装与组件的重量有关,组件的安装价格相同。而支架的安装与数量有关,长支架安装数量有一定下降,单瓦成本略低。 综上系统端的可变BOS成本细项,对于两种组件串联数的方案而言,BOS成本在上述细项的成本进行相加,那么1*18长支架方案略显优势,可比长短支架方案下降0.7分/W。 综上可知,对于固定面积的屋顶分布式光伏电站,若光伏组件的串联数发生变化,对阵列的布置带来一定影响,当全使用长支架或长短支架共存的两种方案,系统电缆、支架、逆变器等成本均会发生变化。 在该案例中当使用1*18支架设计方案有一定优势,而组件串联数增加2块后,在线缆成本、容量上均有一定优势,但是却带来支架、基础成本的增加。 因此我们在做具体的项目设计时,不能单纯依靠组件串联数的计算公式,还需要依据屋面面积等情况进行排布,通过不同方案的测算,得出最合理的设计。

组件离地高度对分布式光伏项目收益的影响

商业综合体女儿墙普遍较高,屋顶设备较多。在这种情况下,组件离地高度会影响项目的布置容量、造价、发电量和收益,因此需要结合项目实际情况进行综合比较。 本文采用CandelaRoof软件,以江苏常州某300kW低压并网项目为例,对组件离地高度与收益率的关系进行分析。该项目采用自发自用、余电上网模式,综合自用电价0.796元/kWh,自发自用率90.3%。需要说明的是:本文的分析结论只适用于个案。 01 方案1:组件最低点离地高度0.5米,布置倾角25° 1)经软件计算:按冬至日上午9点-下午3点,阴影遮挡范围(红色虚线内区域)面积为275㎡,占比10.24%。 2)对可用区域布置545组件,倾角25°,共布置512块,容量279.04kWp。 3)创建支架和基础。(组件最低点离地高度0.5米) 4)每20块组件构成1串(个别16块1串),采用5台50kW逆变器汇流接入并网点,容配比1.12。 02 方案2:组件最低点离地高度1.5米,布置倾角23° 注:本案例假设支架立柱、横梁等部件的截面不变,只是立柱高度提高 1)经软件计算:按冬至日上午9点-下午3点,阴影遮挡范围面积为0㎡(因为沿着女儿墙四周已预留1米通道)。 2)对可用区域布置545组件,倾角23°,共布置600块,容量327.00kWp。 3)创建支架和基础。(组件最低点离地高度1.5米) 4)每20块组件构成1串,采用5台50kW逆变器汇流接入并网点,容配比1.31。 03 采用CandelaRoof软件的方案比选功能,选中上述两个文件之后,导出方案对比结果如下: 方案1-离地0.5米 方案2-离地1.5米 一、设计条件 气象数据来源 Meteonorm Meteonorm 水平面年总辐射(kWh/㎡) 1247.00 1247.00 组件型号 LR5-72 HPH-545M LR5-72 HPH-545M 逆变器型号 SG50CX SG50CX 容配比 1.12 1.31 汇流方式及并网点数量 A.组串逆变器-并网点(1个) A.组串逆变器-并网点(1个) 方阵实际倾角(°) 25 23 方阵实际方位角(°) 0 0 方阵离地高度(m) 0.5 1.5 方阵间距(平屋顶)(m) 3.9 3.8 二、设计输出概要 布置容量(kWp) 279.04 327.00 造价(元) 1159524.00 1359654.57 造价(元/W) 4.16 4.16 发电量(kWh) 301454.88 355922.48 发电量(kWh/kWp) 1080.33 1088.45 全部投资内部收益率(所得税后)(%) 13.99 14.27 自有资金内部收益率 (%) 19.54 20.17 三、主要设备材料比较 组串出线电缆长度(m) 1508.65 1830.95 一级汇流电缆长度(m) 275.76 280.48 其他电缆长度(m) 0.00 0.00 彩钢瓦支架(kg/kWp) 0.00 0.00 水泥屋顶支架(kg/kWp) 21.78 26.01 四、首年PR比较(%) 阴影损失 3.41 2.62 入射损失 2.15 2.17 污秽损失 3.00 3.00 弱光损失 1.00 1.00 温度损失 3.37 3.39 组件功率偏差 -0.40 -0.40 第1年组件衰减 0.28 0.28 LID损失 1.60 1.60 失配损失 1.20 1.20 交直流线损 0.94 0.93 逆变器损失 1.50 1.50 自用电 0.50 0.50 不可利用率 1.50 1.50 变压器损失 0.00 0.00 双面增益 0.00 0.00 PR 81.17 81.81 五、造价分项比较(元/W) 设备购置费 光伏组件 2.00 2.00 光伏支架 0.21 0.25 交流/直流汇流箱 0.00 0.00…

The practical functions of the Candela3D-CAD plugin are available for free use (2)

The Candela3D-CAD plugin is a companion tool for the main Candela3D program, and it is completely free to users. The Candela3D-CAD plugin offers many practical functions and does not rely on the Candela3D software to run. Some of its tools can significantly enhance everyone's work efficiency, and we highly recommend them. The previous article "Candela3D-CAD | Free Use - Practical CAD Plugins (1)" has introduced some of the primitive processing functions. This article is the second part: drawing generation and reverse import. At the end of the article, there are download links, installation, and uninstallation videos for using the plugin. 1. Generate drawing command set (1) DrawArrayAndTransformerCenter: This command is used to mark the center coordinates of rectangular Pcs. When executing this command, the plugin will automatically identify all rectangular Pcs in the drawing. The user then selects the rectangular Pcs that need to be marked, and the software will…

The practical functions of the Candela3D-CAD plugin are free to use (3)

The Candela3D-CAD plugin is a companion tool for the main Candela3D program, fully available to users free of charge. The Candela3D-CAD plugin offers numerous practical functions and does not rely on the Candela3D software to run. Certain tools can significantly enhance everyone's work efficiency, and we highly recommend them. The previous articles "Candela3D-CAD | Free Use - Practical CAD Plugins (1)" and "Candela3D-CAD | Free Use - Practical CAD Plugins (2)" have introduced some of the primitive processing functions. This article is the third part: Other Functions. At the end of the article, there are download links, installation, and uninstallation videos for using the plugin. (1) AlignArrays: After using the "Transform Polygons to Arrays (Poly2block)" command, the transformed array blocks may appear unevenly arranged in rows and columns. Therefore, it is necessary to use the "Align Arrays" command to align the transformed array blocks in rows and columns. "Azimuth tolerance":…

The practical functions of the Candela3D-CAD plugin are free to use (1)

The Candela3D-CAD plugin is a companion tool for the main Candela3D program, and it is completely free to users. The Candela3D-CAD plugin offers many practical functions and does not rely on the Candela3D software to run. Some of its tools can significantly enhance our work efficiency, and we highly recommend them. This article is the first part: graphic element processing. At the end of the article, there are download links and videos demonstrating the installation and uninstallation of the plugin. (1) Unionpolyline: The Red line In one cell command, specifically designed for handling a large number of Red line Ranges exported from software such as Ovi and ArcGIS. This command is limited to merging available Areas and cannot select and merge Restricted areas. After executing this command, the software will display the following interface: "Area threshold": When the proportion of the intersection area of two areas to the area of…

Fresh Questions, Practical Answers: PVsyst Q&A Series #5

The PVsyst version used for the following Q&A is 6.66 or higher, but other lower versions can also be referenced for guidance. 1. Can the power factor of the inverter in PVsyst be adjusted? [Teacher Chen]: By default, the power factor in the inverter parameters is set to No settings, but you can open the inverter parameters and set it within the range of 0.8 leading to 0.8 lagging in the "Power Factor" option, as shown in the interface in Figure 1. ▲Figure 1: Power Factor Adjustment in the Inverter Parameter Interface 2. How to set up a system with 39 PV modules? Should there be 2 sub-arrays? One with 20 modules and one with 19 modules? [Teacher Chen]: As indicated in the title, this photovoltaic system utilizes a total of 39 modules and shares a single 10kW string inverter, where the MPPT input channels of the inverter are 2…